Electrical Engineering

Electrical Engineering Major

The Electrical Engineering program at NDSU is accredited by the Engineering Accreditation Commission of ABET (www.abet.org (http://www.abet.org)).

EE Specialization

The Electrical Engineering program is designed to reflect the broad nature of the field, and students may tailor their studies within broad parameters. Students are encouraged to develop an individual program of study in close consultation with their advisers. Examples are available to illustrate how specialization may be obtained in a number of different technical areas. Students may mix and match from the examples to suit their particular interests. Technical areas include the following:

- Biomedical Engineering: This area is firmly based in engineering and the life sciences. The integration of medicine and engineering serves to provide appropriate products, tools, and techniques for research diagnosis and treatment by health care professionals.
 Some important products are artificial hearts, medical imaging (MRI, ultrasound, CT scans), prosthetic devices, and computer aids for diagnosis. Biomedical engineers help identify the problems and needs that can be solved using engineering technology and systems methodology to provide high-quality health care at reasonable cost.
- Communication and Signal Processing: These are closely related fields within electrical engineering. Communication is the process of transferring information from one point in time and space to another point. Signal processing involves signal representation, as well as signal design and filtering. Students with this specialization find challenging opportunities worldwide to meet the need for more convenient, inexpensive, and reliable communication and signal processing.
- **Computer Engineering:** This area involves hardware and software for small and large computers and for all the products that have dedicated computers within the product, such as microwave ovens and automobiles.
- Control Engineering: This is the design and implementation of algorithms for controlling physical systems. Examples include active suspension for cars, auto pilots for aircraft, and robot motion control.
- Electromagnetics: This area includes electromagnetic compatibility, fiber optics, antennas, microwave devices, radar, sonar, satellite systems, power and communication transmission lines, grounding, shielding, and propagation.
- Electronics and Microelectronics: Examples are integrated circuits, VLSI, transistors, lasers, consumer electronics, defense electronics, power electronics, and electronic materials.
- Optical Engineering: The Optical Engineering area was developed jointly with the Department of Physics (http://www.ndsu.edu/physics)
 The Optical Engineering area prepares future engineers in such areas as quantum theory; coherent/incoherent, polarized/nonpolarized light; geometric, physical and Fourier optics; holography; and image processing and acquisition.
- **Power Systems:** This area includes the generation, transmission, distribution, and utilization of electric energy subject to safety, environmental, and economic concerns.

Major Requirements

Major: Electrical Engineering

Degree Type: B.S.E.E.

Required Degree Credits to Graduate: 126

General Education Requirements

First Year Experience (F):

UNIV 189	Skills For Academic Success (Students transferring in 24 or more credits do not need to take UNIV 189.)	1
Communication	n (C):	
ENGL 110	College Composition I	3
ENGL 120	College Composition II	3
One Course in U	pper Level Writing. Select one of the following:	3
ENGL 320	Business and Professional Writing	
ENGL 321	Writing in the Technical Professions	
ENGL 324	Writing in the Sciences	
ENGL 459	Researching and Writing Grants and Proposal	
COMM 110	Fundamentals of Public Speaking	3
Quantitative Re	asoning (R):	
MATH 165	Calculus I	4
Science & Tech	nology (S):	
CHEM 121	General Chemistry I	3
PHYS 251	University Physics I	4
PHYS 252	University Physics II	4
Select one of the	e following co-req labs	1
CHEM 121L	General Chemistry I Laboratory	
PHYS 251L	University Physics I Laboratory	
PHYS 252L	University Physics II Laboratory	
Humanities & F education list	ine Arts (A): Select from current general	6
Social & Behav education list	ioral Sciences (B): Select from current general	6
Wellness (W): S	elect from current general education list	2
Cultural Diversi	ty (D): Select from current general education list	
Global Perspec list	tives (G): Select from current general education	
Total Credits		43

Major Requirements

General Education Requirements			
Electrical Engine	eering Core Requirements		
ECE 111	Introduction to Electrical and Computer Engineering	3	
ECE 173	Introduction to Computing *	3	
ECE 275	Digital Design [*]	4	
ECE 311	Circuit Analysis II	4	
ECE 321	Electronics for Electrical Engineers	5	
ECE 331	Energy Conversion	4	
ECE 341	Random Processes	3	
ECE 343	Signals & Systems	4	
ECE 351	Applied Electromagnetics	4	

ECE 376	Embedded Systems	4
ECE 401	Design I (capstone)	1
ECE 403	Design II (capstone)	2
ECE 405	Design III (capstone)	3
MATH Courses	Required	
MATH 129	Basic Linear Algebra *	2
MATH 166	Calculus II *	4
MATH 265	Calculus III (w/ vectors) *	4
MATH 266	Introduction to Differential Equations *	3
Other Courses F	Required	
EE 206	Circuit Analysis I *	4
ENGR 402	Engineering Ethics and Social Responsibility	1
ECE Electives	Select 9 credits of ECE 400 level electives (excluding 494 and 496)	9
	ross listed courses of ECE/IME 427; ECE/IME 429; 1; & ECE/PHYS 411L	
Tech Electives:	Select 12 credits from the following:	12
ABEN 456	Biobased Energy	
BIOL 150	General Biology I	
& 150L	and General Biology I Laboratory	
BIOL 220 & 220L	Human Anatomy and Physiology I and Human Anatomy and Physiology I Laboratory	
BIOL 221	Human Anatomy and Physiology II	
& 221L	and Human Anatomy and Physiology II Laboratory	
BIOL 315 & 315L	Genetics and Genetics Laboratory	
CE 309 & CE 310	Fluid Mechanics and Fluid Mechanics Laboratory	
CE/ME 486	Nanotechnology and Nanomaterials	
CHEM 122 & 122L	General Chemistry II and General Chemistry II Laboratory	
CHEM 341 & 341L	Organic Chemistry I and Organic Chemistry I Laboratory	
CHEM 342 & 342L	Organic Chemistry II and Organic Chemistry II Laboratory	
CHEM 364	Physical Chemistry I	
CHEM 365 & CHEM 471	Physical Chemistry II and Physical Chemistry Laboratory	
CHEM 425 & CHEM 429	Inorganic Chemistry I and Inorganic Chemistry Laboratory	
CSCI 161	Computer Science II	
CSCI 222	Discrete Mathematics	
CSCI 335		
CSCI 336	Theoretical Computer Science II	
CSCI 366	Database Systems	
CSCI 372	Comparative Programming Languages	
CSCI 426	Introduction to Artificial Intelligence	
CSCI 458	Microcomputer Graphics	
CSCI 459	Foundations of Computer Networks	
CSCI 467	Algorithm Analysis	
CSCI 474	Operating Systems Concepts	
CSCI 475	Operating Systems Design	
CSCI 477	Object-Oriented Systems	

	ECE 374	Computer Organization	
	ECE 4XX	(Any ECE 400 level didactic course)	
	ECE 494	Individual Study (max. of 6 cr.)	
	ECE 496	Field Experience (max. of 3 cr.)	
	ENGR 310	Entrepreneurship for Engineers and Scientists	
	IME 440	Engineering Economy	
	IME 456	Program and Project Management	
	IME 461	Quality Assurance and Control	
	MATH 270	Introduction to Abstract Mathematics	
	MATH 420	Abstract Algebra I	
	MATH 421	Abstract Algebra II	
	MATH 429	Linear Algebra	
	MATH 450	Real Analysis I	
	MATH 451	Real Analysis II	
	MATH 452	Complex Analysis	
	MATH 480	Applied Differential Equations	
	MATH 481	Fourier Analysis	
	MATH 483	Partial Differential Equations	
	MATH 488	Numerical Analysis I	
	MATH 489	Numerical Analysis II	
	ME 221	Engineering Mechanics I	
	ME 222	Engineering Mechanics II	
	ME 223	Mechanics of Materials	
	ME 350	Thermodynamics and Heat Transfer	
	ME 470	Renewable Energy Technology	
	MICR 445	Animal Cell Culture Techniques	
	PHYS 350	Modern Physics	
	PHYS 360	Modern Physics II	
	PHYS 413	Lasers for Scientists and Engineers	
	PHYS 415	Elements of Photonics	
	PHYS 485	Quantum Mechanics I	
	STAT 450	Stochastic Processes	
	STAT 451		
	STAT 468	Probability and Mathematical Statistics II	
	ZOO 460	Animal Physiology	
Т	otal Credits		126

Total Credits

* No grade less than a C accepted in these courses and before enrolling in ECE 300 level courses, excluding ECE 311.

Degree Requirements and Notes

- A student must complete at least 60 semester credits of professional level course work in his/her program while in residence and enrolled in the college. Students transferring into the college from programs with professional accreditation are exempt from this residency requirement but are subject to the residency requirement of NDSU.
- Transfer Students Transfer courses with grades less than 'C' in Biology, Chemistry, Computer Science, Mathematics, Physics, and any type of engineering class will not be accepted as a major requirement.
- All Students Students are required to attain a grade of 'C' or better in ECE 173 Introduction to Computing, ECE 275 Digital Design, EE 206 Circuit Analysis I, and all required MATH courses.

Note: For students interested in pursuing one of the areas of specialization, lists of recommendations for specific electives are available from the ECE Department.