The Department of Chemistry and Biochemistry offers graduate study leading to the Master of Science (M.S.) and Doctor of Philosophy (Ph.D.) degrees. The department also participates in the interdisciplinary Ph.D. program in Cellular and Molecular Biology.

At the start of the first year of study, entering graduate students take entrance examinations in chemistry and biochemistry, as well as analytical, inorganic, organic, and physical chemistry. The graduate student progress committee uses these exams for advisory purposes in recommending course work during the first year. As a consequence, programs are individually tailored to the needs of each student.

The chemistry, biochemistry, and molecular biology of plant, animal, insect, and microbial systems are studied through advanced course work and research. Selection of the area of emphasis depends on the interests of the student. Typically, course work is completed in one to one-and-a-half years for M.S. candidates, and two years for Ph.D. candidates, leaving later years for full-time thesis research. The typical time to complete a graduate degree averages three years for the M.S. degree and approximately five years for the Ph.D.

Research Opportunities and Infrastructure

The Department of Chemistry and Biochemistry is a research intensive department with funded research programs spanning areas from materials to medicine. External research grants from the National Science Foundation, National Institutes of Health as well as many other public and private agencies support the graduate programs in the department.

All research and most teaching activities within the department occur within two centrally-located buildings. Sugihara Hall, a 100,000 square foot modern research facility, was opened in January 2022 to house the department offices, core instrument facilities and research labs. Research is also carried out in the Quinten Burdick building directly across the street from Sugihara Hall.

The department facilities house both teaching and research labs, glassblowing facilities, as well as stockroom and multiuser equipment for the campus. Modern instrumentation is vital to research in the chemical sciences. The quality and quantity of instrumentation within the department has been greatly enhanced in the last few years through aggressive fundraising efforts and university matching support.

The department has upgraded its mass spectrometry capabilities to include a Bio-TOF III with accurate mass analysis, ESI and CI ionization; as well as an Esquire 3000 Plus - an ion trap instrument with MS-MS and proteomics capabilities. The department also has modern 400 and 500 MHz Nuclear Magnetic Resonance (NMR) spectrometers for research with specialized capabilities for both small molecule analysis and protein NMR. The Materials Characterization Laboratory houses the departmental X-ray crystallography facilities and a brand new Analytical Ultracentrifuge. In addition to materials characterization, a Core Biology Facility that serves multiple users is housed within the department for performing bioassays, cell and tissue culture work, and molecular biology experiments. The facility has 96- and 384-well plate fluorimeters, culture changers, flow hoods, RT-PCR and FPLC protein purification instrumentation. All core facilities are staffed with highly trained technical staff for scientific consultation and training.
Prospective students are encouraged to visit the Department of Chemistry and Biochemistry website (http://www.ndsu.edu/chemistry/) for contact and more information.

The graduate programs in biochemistry are open to all qualified graduates of universities and colleges of recognized standing. To be admitted with full standing to the program, the applicant must meet the Graduate School’s admission requirements, have adequate preparation for the study of chemistry and biochemistry at the graduate level, and show potential to undertake advanced study and research as evidenced by academic performance and experience.

Financial Assistance

The student must first apply to the Graduate School and be accepted in full or conditional status before he/she is eligible for an assistantship in the Department of Chemistry and Biochemistry.

Graduate students in the Department of Chemistry and Biochemistry are supported by either teaching assistantships (TA) or research assistantships (RA). The standard stipend is $22,000 per year for both Research Assistants (RA) and Teaching Assistants (TA). In addition to the stipend, graduate assistants in good standing receive a graduate tuition waiver. Tuition waivers cover base tuition for NDSU graduate credits. Students are responsible for differential tuition, student fees, and tuition for non-graduate level credits taken or Cooperative Education credits.

Master of Science

The Master of Science program requires the completion of 30 graduate semester credits with an overall GPA of 3.0 or better. This total is comprised of both class work and research credit, but must include at least 16 semester credits of didactic course work (https://catalog.ndsu.edu/graduate/graduate-school-policies/).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 720</td>
<td>Introduction to Chemical Research</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 790</td>
<td>Graduate Seminar (second year seminar)</td>
<td>1</td>
</tr>
<tr>
<td>or BIOC 790</td>
<td>Graduate Seminar</td>
<td>1</td>
</tr>
<tr>
<td>UNIV 720</td>
<td>Scientific Integrity</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 790</td>
<td>Graduate Seminar (defense seminar)</td>
<td>1</td>
</tr>
<tr>
<td>or BIOC 790</td>
<td>Graduate Seminar</td>
<td>1</td>
</tr>
<tr>
<td>Didactic Credits (601-689, 691; 700-789, 791; 800-889 and 891)</td>
<td>16 *</td>
<td></td>
</tr>
<tr>
<td>CHEM 798</td>
<td>Master’s Thesis</td>
<td>6-10</td>
</tr>
<tr>
<td>or BIOC 798</td>
<td>Master’s Thesis</td>
<td>6-10</td>
</tr>
<tr>
<td>Total Credits Required</td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

As part of total semester credits, the following departmental courses are recommended for students based on discipline:

Analytical

- CHEM 632 Analytical Chemistry II 3
- CHEM 730 Separations 2
- CHEM 732 Advanced Survey of Analytical Chemistry 4
- CHEM 736 Mass Spectrometry 2

Biochemistry and Molecular Biology

- BIOC 673 Methods of Biochemical Research 3
- BIOC 674 Methods of Recombinant DNA Technology 3
- BIOC 701 Comprehensive Biochemistry I 4
- BIOC 702 Comprehensive Biochemistry II 4

Inorganic

- CHEM 724 Chemical Applications of Group Theory 1
- CHEM 725 Advanced Survey of Inorganic Chemistry 3
- CHEM 727 Organometallic Chemistry 3
- CHEM 728 Physical Methods for Chemical and Biomolecular Research 2
- CHEM 744 Organic Spectroscopy 2

Organic

- CHEM 741 Physical Organic Chemistry I 4
- CHEM 742 Physical Organic Chemistry II 2
- CHEM 744 Organic Spectroscopy 2
Each student chooses a thesis adviser within six months of beginning graduate school. As this is one of the most important decisions made in graduate school, students are strongly urged to visit multiple faculty members to discuss research opportunities. In addition, faculty seminars during the fall semester are designed to acquaint new students with the available research programs.

By the end of the first academic year, each student selects an advisory and examination committee, which consists of the thesis adviser, two other faculty members in the chemistry department, and one faculty member from a department outside the Department of Chemistry and Biochemistry.

Doctor of Philosophy

The Ph.D. program requires the completion of 90 graduate semester credits, post-baccalaureate, with an overall GPA of 3.0 or better. This total is comprised of both class work and research credit, but must include of at least 27 semester credits of didactic course work (https://catalog.ndsu.edu/graduate/graduate-school-policies/).

Candidates for the Ph.D degree are required to earn at least 90 semester credits, which can include credits for seminar and research. No fewer than 27 of these 90 semester credits shall be earned in courses carrying graduate credit (courses numbered 601 to 789), and of these 27 credits, a minimum of 20 must be from courses numbered 701 to 789. Of these 20 credits, the requirement is 8 total credits in at least two fields of study other than the major area, selected from:

- Analytical Chemistry
- Biochemistry & Molecular Biology
- Coatings and Polymeric Materials
- Inorganic Chemistry
- Materials & Nanotechnology
- Microbiology
- Organic Chemistry
- Physical Chemistry
- Other related area (e.g., Physics, Math, Pharmacy, Engineering, Zoology)

A student matriculating with a Master's Degree, including one earned at an international institution, must earn not fewer than 60 graduate credits at NDSU. Of these credits, not fewer than 15 credits must be NDSU courses numbered from 701 to 789. Courses numbered 601-689 may be used for the Plan of Study as long as they have not been taken in an undergraduate or previous graduate program. Approved courses are Department of C&B 625, 626, 627, 628 and 630.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 720</td>
<td>Introduction to Chemical Research</td>
<td></td>
</tr>
<tr>
<td>BIOC 790</td>
<td>Graduate Seminar (second year seminar)</td>
<td></td>
</tr>
<tr>
<td>or CHEM 790</td>
<td>Graduate Seminar</td>
<td></td>
</tr>
<tr>
<td>BIOC 790</td>
<td>Graduate Seminar (proposal seminar)</td>
<td></td>
</tr>
<tr>
<td>or CHEM 790</td>
<td>Graduate Seminar</td>
<td></td>
</tr>
<tr>
<td>BIOC 790</td>
<td>Graduate Seminar (public presentation)</td>
<td></td>
</tr>
<tr>
<td>or CHEM 790</td>
<td>Graduate Seminar</td>
<td></td>
</tr>
<tr>
<td>BIOC 790</td>
<td>Graduate Seminar (defense seminar)</td>
<td></td>
</tr>
<tr>
<td>or CHEM 790</td>
<td>Graduate Seminar</td>
<td></td>
</tr>
<tr>
<td>UNIV 720</td>
<td>Scientific Integrity</td>
<td></td>
</tr>
</tbody>
</table>

As part of total semester credits, the following departmental courses are required for students based on program:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 725</td>
<td>Advanced Survey of Inorganic Chemistry</td>
</tr>
<tr>
<td>BIOC 673</td>
<td>Methods of Biochemical Research</td>
</tr>
</tbody>
</table>
Admission to candidacy for the Ph.D. degree is accomplished by satisfying three requirements: 1) satisfactory performance in course work with a minimum 3.0 grade-point average, 2) satisfactory performance on a written comprehensive examination, taken by the end of the fourth semester, and 3) satisfactory defense of an original research proposal on a topic approved by the student’s supervisory committee. The defense of this proposal must occur at least eight months prior to the final oral examination.

Following completion of dissertation research, the candidate must complete a written dissertation and an oral presentation to the department and supervisory committee.

Christopher L. Colbert, Ph.D.
Purdue University, 2000
Postdoctoral, Howard Hughes Medical Institute, 2000-2004
Research Interests: Structural Biology and Metalloprotein Biochemistry

Stuart J. Haring, Ph.D.
University of Iowa, 2004
Postdoctoral, University of Iowa, 2004-2008
Research Interests: DNA Metabolism and Cell Cycle Regulation

Guodong Liu, Ph.D.
Hunan University, 2001
Postdoctoral, New Mexico State University, 2002-2004;
Postdoctoral, Pacific Northwest National Laboratory, 2004-2006
Research Area: Nanotechnology and Biological Sensing

Kenton R. Rodgers, Ph.D.
University of Iowa, 1988
Postdoctoral, Princeton University, 1989-1993
Research Area: Inorganic and Bioinorganic Chemistry

Sangita C. Sinha, Ph.D.
Purdue University, 2000
Postdoctoral, Howard Hughes Medical Institute, 2001-2005
Research Interests: Biochemistry and Structural Biology of Host-Pathogen Interaction

John Wilkinson, Ph.D.
Vanderbilt University, 2001
Postdoctoral, University of Michigan, 2001-2006
Research Interests: Metabolic Control of Cancer Progression

Zhongyu Yang, Ph.D.
University of Pittsburgh, 2010
Research Area: Bioanalytical chemistry; Biophysics; Electron Paramagnetic Resonance Spectroscopy